Abstract

We show that a graphitic carbon interfacial layer, derived from C70 by annealing at 500 °C, results in a significant increase in the attainable photocurrent of a photoelectrochemical cell that contains a WO3 -functionalized fluorine-doped tin oxide (FTO) photoanode. Time-resolved photoluminescence spectroscopy, photoconductive atomic force microscopy, Hall measurements, and electrochemical impedance spectroscopy show that the increase in photocurrent is the result of fast and selective electron transport from optically excited WO3 through the graphitic carbon interfacial layer to the FTO-coated glass electrode. Thus the energy efficiency of perspective solar-to-fuel devices can be improved by modification of the interface of semiconductors and conducting substrate electrodes by using graphitized fullerene derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.