Abstract

N-(1-Anilinonaphthyl-4)maleimide (ANM) has been used to modify coupling factor 1 (CF1), the terminal coupling factor of photophosphorylation in chloroplasts. As with other monofunctional maleimides, incubation of thylakoids with ANM in the light, but not in the dark, causes energy transfer inhibition of photophosphorylation. In the dark, sites on both the gamma and epsilon subunits of CF1 are modified. The light-accessible site is also on the gamma subunit. Trypsin digestion of the enzyme after dithiothreitol activation reveals that the dark-and light-accessible sites on the gamma subunit are different amino acid residues. Fluorescence of ANM bound at the dark-and light-accessible sites has been measured after isolation of CF1 from thylakoids. The fluorescence emission maximum of ANM at the light-accessible site is blue-shifted and the quantum yield is increased 2-fold relative to ANM bound at dark-accessible sites. On the soluble enzyme, fluorescence polarization is high and equivalent for ANM bound at both dark-and light-accessible sites. Fluorescence energy transfer from a tryptophan in a hydrophilic region of the epsilon subunit to ANM bound to the epsilon subunit but not to the gamma subunit has been observed. The significance of these observations is discussed with respect to the structure of the gamma subunit and its role in conformational transitions within CF1 that occur during energization of the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.