Abstract
Urban wastewater treatment plants (WWTP) represent key point-source discharges of microplastics (MP) into the environment, however, little is known about the microbial carrying capacity of plastics travelling through them. The purpose of this study was to quantify the number of cells that become associated with MP at different locations within a WWTP, and to assess differences in microbiome communities. We conducted a field experiment incubating low density polyethylene (LDPE) MP beads in WWTP influent and effluent, as well as tracking free floating beads during passage in wastewater from a large municipal hospital to an urban WWTP, where they were subsequently recovered. Using two cell counting methods - automated flow cytometric true absolute cell counts and indirect cell quantification via protein content based on a model E. coli cell - we quantified cell attachment to LDPE beads. LDPE associated counts ranged from 350 × 103 cells cm−2 after incubation in wastewater effluent, and 990 × 103 cells cm−2 after incubation in wastewater influent. 16S rRNA gene amplicon sequencing was used to determine the bacterial community structure of the plastic-associated microbiomes. Our results showed that distinct bacterial communities developed on the LDPE MP following exposure to each wastewater type. Influent (untreated) wastewater LDPE-associated microbiomes were dominated by Bacillota whereas the microbes that attached in wastewater effluent (tertiary treated) were dominated by Pseudomonadota. In conclusion, this study provides clear evidence that microplastics migrating through the sewer network and WWTP rapidly accumulate microbiomes with unique microbial community structures varying from sewage influent to effluent. These findings demonstrate the differential microbiological risk from MP associated with routine wastewater discharges to those released from intermittent combined sewer overflows (CSOs) during storm events.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.