Abstract

Siderophores are a class of biogenic macromolecules that have high affinities for metals in the environment, thus could be exploited for alternate sustainable metal recovery technologies. Here, we assess the role of siderophores in the extraction and complexation of metals from an iron oxide-rich metallurgical processing residue and a low-grade primary Ni ore. Evaluation of the biological siderophore production by three pseudomonads, P. fluorescens, P. azotoformans and P. putida identified that P. putida could generate the highest siderophore yield, which was characterized as a hydroxamate and catecholate mixed-type pyoverdine PyoPpC-3B. Key physicochemical parameters involved in raw siderophore mediated metal extraction were identified using a fractional factorial design of experiments (DOE) and subsequently employed in purified PyoPpC-3B leaching experiments. Further targeted experiments with hydroxamate and catecholate functional analogues of PyoPpC-3B confirmed their marked ability to competitively or selectively leach and chelate hard metal ions, including Al(OH)4-, Mn2+ and Zn2+. Interestingly, complexation of Mn and Zn ions exceeded the natural affinity of pyoverdine for Fe3+, thus despite the low metal recoveries from the materials tested in this study, this work provides important new insights in siderophore-metal interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call