Abstract

Purpose – The traditional practice for maintenance, quality control and production scheduling is to plan independently irrespective of an interrelationship exist between them. The purpose of this paper is to develop an approach for integrating maintenance, quality control and production scheduling. The objective is to investigate the benefits of the integrated effect in terms of the expected total cost of system operation of the three functions. Design/methodology/approach – The proposed approach is based on the conditional reliability of the components. Cost model for integrating selective maintenance, quality control using sampling-based procedure and production scheduling is developed using the conditional reliability. An integrated approach is such that, first an optimal schedule for the batches to be processed is obtained independently while the maintenance and quality control decisions are optimized considering the optimal schedule on the machine. The expected total cost of conventional approach, i.e. “No integration” is calculated to compare the effectiveness of integrated approach. Findings – The integrated approach have shown a higher cost saving as compared to the independent planning approach. The approach is practical to implement as the results are obtained in a reasonable computational time. Practical implications – The approach presented in this paper is generic and can be applied at planned as well as unplanned opportunities. The proposed integrated approach is dynamic in nature, as during maintenance opportunities, it is possible to optimize the decision on maintenance, quality control and production scheduling considering the current age of components and production requirement. Originality/value – The originality of the paper is in the approach for integration of the three elements of shop floor operations that are usually treated separately and rarely touched upon by researchers in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.