Abstract

In many industrial environments like manufacturing systems, military equipments, power generation systems, etc., system maintenance is performed between successive missions. Different maintenance options (do nothing, minimal repair, preventive maintenance options or system overhaul, etc.) are possible for components in the system. However, it may not be feasible to do all possible maintenance actions during the maintenance break. Hence, optimal maintenance decision is required such that available resources are optimally used to maximize the next mission reliability. In this paper, a mathematical model is used to help in decision making for selective maintenance under imperfect repair. The level of maintenance actions determines the improvement in the component health. A model is formulated to relate the amount of resources used for maintenance to the level of imperfect repair. Further, a characteristic constant is used which determines the component response to resource consumed by a maintenance task. Selective maintenance model is formulated and illustrative examples are used to demonstrate the applicability and advantages of the proposed method. The results show that introduction of imperfect repair facilitates better allocation of maintenance resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.