Abstract

Summary While model selection is a well-studied topic in parametric and nonparametric regression or density estimation, selection of possibly high-dimensional nuisance parameters in semiparametric problems is far less developed. In this paper, we propose a selective machine learning framework for making inferences about a finite-dimensional functional defined on a semiparametric model, when the latter admits a doubly robust estimating function and several candidate machine learning algorithms are available for estimating the nuisance parameters. We introduce a new selection criterion aimed at bias reduction in estimating the functional of interest based on a novel definition of pseudo risk inspired by the double robustness property. Intuitively, the proposed criterion selects a pair of learners with the smallest pseudo risk, so that the estimated functional is least sensitive to perturbations of a nuisance parameter. We establish an oracle property for a multi-fold cross-validation version of the new selection criterion that states that our empirical criterion performs nearly as well as an oracle with a priori knowledge of the pseudo risk for each pair of candidate learners. Finally, we apply the approach to model selection of a semiparametric estimator of average treatment effect given an ensemble of candidate machine learners to account for confounding in an observational study that we illustrate in simulations and a data application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.