Abstract

ABSTRACTIn this study, we performed immunohistochemistry for somatostatin (SS), neuropeptide Y (NPY), and parvalbumin (PV) in LiCl–pilocarpine-treated rats to observe quantitative changes and axonal sprouting of GABAergic interneurons in the hippocampus, especially in the sclerotic hippocampus. Fluoro-Jade B (FJB) was performed to detect the specific degeneration of GABAergic interneurons. Compared with age-matched control rats, there were fewer SS/NPY/PV-immunoreactive (IR) interneurons in the hilus of the sclerotic hippocampus in pilocarpine-treated rats; hilar dentritic inhibitory interneurons were most vulnerable. FJB stain revealed degeneration was evident at 2 months after status epilepticus. Some SS-IR and NPY-IR interneurons were also stained for FJB, but there was no evidence of degeneration of PV-IR interneurons. Axonal sprouting of GABAergic interneurons was present in the hippocampus of epileptic rats, and a dramatic increase of SS-IR fibers was observed throughout all layers of CA1 region in the sclerotic hippocampus. These results confirm selective loss and degeneration of a specific subset of GABAergic interneurons in specific subfields of the hippocampus. Axonal sprouting of inhibitory GABAergic interneurons, especially numerous increase of SS-IR neutrophils within CA1 region of the sclerotic hippocampus, may constitute the aberrant inhibitory circum and play a significant role in the generation and compensation of temporal lobe epilepsy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.