Abstract

In this work, liquid-phase catalytic oxidation of toluene was carried out under solvent-free conditions, and highly selective synthesis of benzaldehyde (BAL) and benzyl alcohol (BOL) and benzoic acid (BAC) in the presence of Mn@ZIF-8 calcined material as catalyst with oxygen molecules. As a heterogeneous catalyst, the zeolitic imidazolate framework Mn@ZIF-8 derived material exhibited reasonable substrate-product selectivity (70.3% of selectivity to BAL and BOL, 95.1 % of selectivity to BAL, BOL and BAC) and conversion (6.5%) under optimum reaction conditions. The catalysts were characterized by BET-specific surface area determination, XRD, XPS, FT-IR, TG-DTG and SEM-EDS-Mapping. The results demonstrated that the catalytic capacity of the catalysts was enhanced by the good dispersion of amorphous Mn species in ZIF-8 derivatives and high specific surface area. The possible reaction pathway for the catalytic oxidation of toluene was also suggested. Maybe this method employing Mn@ZIF-8 as efficient catalyst affords a new and environmentally friendly route for the synthesis of BOL and BAL from the selective oxidation of toluene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call