Abstract

This paper describes an original adaptive multispectral LED light source that utilizes miniature spectrometer to control its flux in real time. Current measurement of the flux spectrum is necessary in high-stability LED sources. In such cases, it is important the spectrometer work effectively with the system that controls the source and the whole system. Therefore, as important as flux stabilization is the integration of the integrating sphere-based design with the electronic module and power subsystem. Since the problem is interdisciplinary, the paper mainly focuses on presenting the solution of the flux measurement circuit. In particular, the proprietary way of operating the MEMS optical sensor as a real-time spectrometer was proposed. Then, the implementation of the sensor handling circuit, which determines the spectral measurements accuracy and thus the output flux quality, is described. Also presented is the custom method of coupling the analog part of the flux measurement path with the analog-to-digital conversion system and the control system based on the FPGA. The description of the conceptual solutions was supported by the results of simulation and laboratory tests at selected points of the measurement path. The presented concept allows to build adaptive LED light sources in the spectral range from 340 nm to 780 nm with adjustable spectrum and flux value, with electrical power up to 100 W, with adjustable flux value in the range of 100 dB, operating in constant current or pulsed mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.