Abstract
Yttrium scandate crystals doped by Nd3+ and Tm3+ ions have been successfully grown in the form of fibers using the laser-heated pedestal growth (LHPG) technique. The selective laser spectroscopy methods have identified and distinguished three distinct types of optically active centers associated with Nd3+ and Tm3+ ions. The substitution of Y3+ and Sc3+ for rare-earth ions in the C2 structural site leads to the formation of two distinct basic long-time centers. In Nd3+:YScO3, another type of center (a short-lifetime one) is formed known as the Nd3+-Nd3+ aggregate pair. This center arises from the substitution of Y3+ or Sc3+ for Nd3+ cation in the adjacent MO6 polyhedra that share an edge. In Tm3+:YScO3, the third optical center is formed as a result of the substitution of Y3+ or Sc3+ for Tm3+ in the MO6 octahedra with the C3i site symmetry. The fluorescence decay lifetimes of Nd3+ and Tm3+ ions in the YScO3 crystal structure have been accurately measured and estimated. A Stark level diagram illustrating the splitting of 4F3/2, 4I11/2, and 4I9/2 multiplets of Nd3+ ions has been constructed to show features of the active optical centers with the C2 site symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.