Abstract

Purpose – This work is focused on the investigation of direct production of electrical discharge machining (EDM) electrodes through the selective laser sintering (SLS) technique using a new metal-matrix composite material made of molybdenum and a copper-nickel alloy (Mo-CuNi). The influence and optimization of the main SLS parameters on the densification behavior and porosity is experimentally studied. Additionally, EDM experiments are performed to evaluate the electrodes performance under different machining conditions. The paper aims to discuss these issues. Design/methodology/approach – The new EDM electrode material used was a powder system composed of Mo and pre-alloyed CuNi. A systematic experimental methodology was designed to evaluate the effects of layer thickness, laser scan speed and hatch distance. The densification behavior, porosity and surface morphology of the samples were analyzed through microstructural and surface analysis. EDM experiments were conducted under three different regimes in order to observe the electrodes behavior and performance. The results were compared with copper powder electrodes manufactured by SLS and solid copper electrodes EDMachined under the same conditions. Findings – The experimental results showed that the direct SLS manufacturing of composite electrodes is feasible and an adequate combination of parameters can produce parts with good quality. The laser scan speed has a great effect on the densification behavior of the samples, while the effect of hatch distance on the porosity is more visible when the overlapping degree is considered. The overlapping also had a significant effect on the surface morphology. The EDM results showed that the Mo-CuNi electrodes had superior performance to the copper powder electrodes made by SLS for all the EDM regimes applied, but inferior to those achieved with solid copper electrodes. Originality/value – Significant results on the direct SLS manufacturing of a new material which has a great technological potential to be used as an EDM electrode material are presented. Valuable guidelines are given in regard to the SLS optimization of Mo-CuNi material and its performance as an EDM electrode. This work also provides a systematic methodology designed to be applied to the SLS process to produce EDM electrodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call