Abstract
ABSTRACT Zn possesses good biodegradability and biocompatibility, but its strength and hardness are insufficient for bone implants. In this study, Ag was introduced into Zn to improve the mechanical properties by selective laser melting. The results showed that Ag was dissolved in Zn, which generated constitutional undercooling in front of the advancing solid/liquid interface during solidification, making more nucleation events occur and thus refining the grains. When Ag content exceeded its solid solubility in Zn, AgZn3 phase is formed, which acted as active nucleation sites for Zn grains, further refining the grains. The refinement of the grains effectively hindered the plastic deformation and dislocation. As a result, the compressive strength and hardness were improved by about 100% and 116%, respectively. When Ag content continued increasing and became excessive, AgZn3 phase grew rapidly, coarsening the grains. Accordingly, the mechanical properties slightly decreased. These results demonstrated that the Zn–Ag alloys are potential implant biomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.