Abstract
Metal matrix composites (MMC) find their uses as high performance materials. The selective laser melting (SLM) of a 316L stainless steel and Al2O3 MMC is presented in this paper. Agglomerate Al2O3 particles had shown to be an adequate powder choice with uniform dispersions in the resultant prints. Relative density, phase, microstructure and mechanical properties of all 1-, 2-, 3-wt% doped products were carefully analyzed. Finite element modeling model was developed to study the associated multi-physics phenomena with high efficiency for process parameter optimization. It is found that the change in SLM temperature profile with Al2O3 addition is mainly due to the change in optical properties rather than thermal. Hence, both simulation and experimentation revealed that higher laser energy input is needed for optimized melting. In addition, cellular dendrites were found to coarsen with increasing Al2O3 addition due to the decreased cooling rate. With hard particle strengthening effects, all samples showed improved hardness with 3-wt% up to 298HV and 1-wt% samples showing much improved yielding and tensile stresses of 579 and 662MPa from 316L. Corresponding microlattice built this way demonstrated a 30 and 23% increase in specific strength and energy absorption from that of 316L too.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.