Abstract

Selective Laser Melting (SLM) was applied for Additive Manufacturing (AM) of CoCrFeNiMn high entropy alloy (HEA) and TiNp/CoCrFeNiMn composite, with the tailored laser parameters for as-printed bulk densification after the process optimization. The pre-alloyed HEA powder by gas-atomization was modified with nano-TiN ceramic particles on the powder surface layer and employed to fabricate HEA matrix composite with uniformly dispersed TiN reinforcements via SLM. The hierarchical microstructures with strong crystallographic textures were generated in the as-printed HEA parts. While in the TiNp/HEA composite, the remarkably refined and nearly equiaxial HEA matrix grains were produced due to the contribution of introduced TiN particles. The average ultimate tensile strength (σUTS) of as-printed composite achieved 1036 MPa with the average elongation to fracture (ef) as ~12%. By contrast, the average σUTS and ef of as-printed HEA were 601 MPa and ~30% respectively. The strengthening mechanism of the SLM-fabricated TiNp/HEA composite was further elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.