Abstract

One of the most widely used pesticides in Chile is carbendazim (CBZ), which in agriculture is used to protect crops from fungal diseases that commonly occur in rice, vegetable, and fruit crops. However, prolonged exposure to it, and its high persistence, can cause adverse health effects. Therefore, it is necessary to determine the presence of CBZ through rapid detection methods in food samples to prevent ingestion and exposure to this pesticide at risk concentrations. In this work, a label-free electrochemical aptasensor based on functionalized carbon nanotubes was prepared for CBZ detection. The carbodiimide reaction between the amino-terminated aptamer and the carboxylic groups of carbon nanotubes achieved the covalent immobilization of the aptamer. The immobilized aptamer changed its conformation when it detected CBZ and blocked access to the redox mediator on the electrode surface, resulting in a measurable decrease in the voltammetric response. Under the optimal conditions, the aptasensor featured a linear detection range between 1.0 and 50.0 nM, with a detection limit of 4.35 nM. Moreover, the aptasensor exhibited good selectivity for CBZ, among other pesticides, and good repeatability. For CBZ detection in tomatoes, the aptasensor accurately measured CBZ content in a sample prepared using the standard addition method. This work provides a simple, rapid, sensitive, and selective biosensor for CBZ detection and quantification in food samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call