Abstract

BackgroundIntense ultrasound, such as that used for tumor ablation, does not differentiate between cancerous and normal cells. A method combining ultrasound and biocompatible gold or magnetic nanoparticles (NPs) was developed under in vitro conditions using human breast and lung epithelial cells, which causes ultrasound to preferentially destroy cancerous cells.ResultsCo-cultures of BEAS-2B normal lung cells and A549 cancerous lung cells labeled with green and red fluorescent proteins, respectively, were treated with focused ultrasound beams with the addition of gold and magnetic nanoparticles. There were significantly more necrotic A549 cells than BEAS-2 cells when gold nanoparticles were added to the culture medium [(50.6 ± 15.1) vs. (7.4 ± 2.9) %, respectively, P < 0.01]. This selective damage to cancer cells was also observed for MDA-MB231 breast cancer cells relative to MCF-10A normal breast cells after treatment with magnetic nanoparticles.ConclusionsThe data obtained for different cell lines indicate that nanoparticle-assisted ultrasound therapy (NAUT) could be an effective new tool for cancer-specific treatment and could potentially be combined with conventional methods of cancer diagnosis and therapy to further increase the overall cancer cure rate.

Highlights

  • Intense ultrasound, such as that used for tumor ablation, does not differentiate between cancerous and normal cells

  • To overcome the drawbacks of high-intensity focused ultrasound (HIFU), we developed a new technique based on an HIFU instrument and biocompatible gold and magnetic nanoparticles (NPs) in this study

  • The percentage of live A549 cancer cells decreased from (60.5 ± 4.0) % for US-treated cells to (29.8 ± 7.5) % for the combination of US with NPs (Fig. 1D, E; Table 1). These results indicate that A549 lung cancer cells are more sensitive to the damage caused by US than BEAS-2B normal lung cells are

Read more

Summary

Introduction

Intense ultrasound, such as that used for tumor ablation, does not differentiate between cancerous and normal cells. Cancer is a leading cause of death worldwide. Many cancer patients die as a result of the severe side effects of chemotherapy or from a drug-resistance-related relapse after the original treatment. It has been established that a typical tumor has a high degree of heterogeneity and can contain more than 100 cell types. If a targeted drug is used, certain types of cancer cells may survive and become dominant in the tumor, eventually making the drug ineffective. If adequate physical treatment is applied, it should reduce the side effects and the growth of drug-resistant cancer cells. Radiation therapy is one of the standard physical methods of cancer treatment. There are various types of radiation therapies, including electromagnetic ionizing radiation

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call