Abstract
The high abundance of cannabinoids within cannabis samples presents an issue for pesticide testing as cannabinoids are often co-extracted with pesticides using various sample preparation techniques. Cannabinoids may also chromatographically co-elute with moderate polarity pesticides and inhibit the ionization of pesticides when using mass spectrometry. To circumvent these issues, we have developed a new approach to isolate commonly regulated pesticides and cannabinoids from aqueous samples using tunable, crosslinked imidazolium polymeric ionic liquid (PIL)-based sorbent coatings for direct immersion solid-phase microextraction (DI-SPME). The selectivity of four PIL sorbent coatings towards 20 pesticides and six cannabinoids, including cannabidiol and Δ9-THC, was investigated and compared against a commercial PDMS/DVB fiber. Extraction and desorption conditions, including salt content, extraction temperature, pH, extraction time, desorption solvent, and desorption time, were optimized using high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection. Under optimized conditions, the PIL fiber consisting of 1-vinylbenzyl-3-octylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([VBIMC8+][NTf2−]) and 1,12-di(3-vinylbenzylimidazolium)dodecane dibis[(trifluoromethyl)sulfonyl]imide ([(VBIM)2C122+]2[NTf2−]) sorbent coating provided the best selectivity towards pesticides compared to other PILs and the PDMS/DVB fibers and was able to reach limits of detection (LODs) as low as 1 µg/L. When compared to a previously reported PIL-based SPME HPLC-UV method for pesticide analysis, the amount of cannabinoids extracted from the sample was decreased 9-fold while a 4-fold enhancement in the extraction of pesticides was achieved. Additionally, the PIL-based SPME method was applied to samples containing environmentally-relevant concentrations of pesticides and cannabinoids to assess its feasibility for Cannabis quality control testing. Relative recoveries between 95% and 141% were obtained using the PIL sorbent coating while recoveries ranging from 50% to 114% were obtained using the PDMS/DVB fiber.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.