Abstract

Selection acts upon genes linked together on chromosomes. This physical connection reduces the efficiency by which selection can act because, in the absence of sex, alleles must rise and fall together in frequency with the genome in which they are found. This selective interference underlies such phenomena as clonal interference and Muller's Ratchet and is broadly termed Hill-Robertson interference. In this review, I examine the potential for selective interference to account for the evolution and maintenance of sex, discussing the positive and negative evidence from both theoretical and empirical studies, and highlight the gaps that remain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.