Abstract

Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin.

Highlights

  • Insulin resistance is an early risk factor for metabolic disease

  • whereas no change is indicated with A. IR

  • Insulin resistance is selective for glucose metabolism in adipocytes

Read more

Summary

Background

Insulin resistance is an early risk factor for metabolic disease. Results: Using various insulin resistance models, insulin regulation of glucose metabolism was universally blunted, whereas other actions (protein synthesis and anti-lipolysis) were unimpaired. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. We observed a consistent reduction in insulin-stimulated glucose uptake in all models of insulin resistance, despite little or no defect in insulin regulation of protein synthesis or lipolysis. Analysis of insulin-stimulated Akt activation, as well as that of several downstream substrates, revealed clear disconnections between various signaling intermediates and functional insulin action These findings demonstrate a clear selectivity of insulin resistance for glucose metabolism in white adipose tissue

EXPERIMENTAL PROCEDURES
The abbreviations used are
RESULTS
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call