Abstract

Glioblastoma (GBM) is a malignant brain tumor with poor prognosis. Radioresistance is a major challenge in the treatment of brain tumors. The development of several types of tumors, including GBM, involves the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Upon activation, this pathway induces radioresistance. In this study, we investigated whether additional use of selective inhibitors of PI3K isoforms would enhance radiosensitivity in GBM. We evaluated whether radiation combined with PI3K isoform selective inhibitors can suppress radioresistance in GBM. Glioma 261 expressing luciferase (GL261-luc) and LN229 were used to confirm the effect of combination of radiation and PI3K isoform inhibitors in vitro. Cell viability was confirmed by clonogenic assay, and inhibition of PI3K/AKT signaling activation was observed by Western blot. To confirm radiosensitivity, the expression of phospho-γ-H2AX was observed by immunofluorescence. In addition, to identify the effect of a combination of radiation and PI3K-α isoform inhibitor in vivo, an intracranial mouse model was established by implanting GL261-luc. Tumor growth was observed by IVIS imaging, and survival was analyzed using Kaplan-Meier survival curves. Suppression of the PI3K/AKT signaling pathway increased radiosensitivity, and PI3K-α inhibition had similar effects on PI3K-pan inhibition in vitro. The combination of radiotherapy and PI3K-α isoform inhibitor suppressed tumor growth and extended survival in vivo. This study verified that PI3K-α isoform inhibition improves radiosensitivity, resulting in tumor growth suppression and extended survival in GBM mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.