Abstract

The human aldo-keto reductase (AKR) 1C3, also known as type-5 17β-hydroxysteroid dehydrogenase and prostaglandin F synthase, has been suggested as a therapeutic target in the treatment of prostate and breast cancers. In this study, AKR1C3 inhibition was examined by Brazilian propolis-derived cinnamic acid derivatives that show potential antitumor activity, and it was found that baccharin (1) is a potent competitive inhibitor (K(i) 56 nM) with high selectivity, showing no significant inhibition toward other AKR1C isoforms (AKR1C1, AKR1C2, and AKR1C4). Molecular docking and site-directed mutagenesis studies suggested that the nonconserved residues Ser118, Met120, and Phe311 in AKR1C3 are important for determining the inhibitory potency and selectivity of 1. The AKR1C3-mediated metabolism of 17-ketosteroid and farnesal in cancer cells was inhibited by 1, which was effective from 0.2 μM with an IC(50) value of about 30 μM. Additionally, 1 suppressed the proliferation of PC3 prostatic cancer cells stimulated by AKR1C3 overexpression. This study is the first demonstration that 1 is a highly selective inhibitor of AKR1C3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.