Abstract

Guanosine 3',5'-cyclic monophosphate (cGMP) and adenosine 3',5'-cyclic monophosphate (cAMP) are mediators of smooth muscle relaxation. In this study, selective inhibitors of phosphodiesterase (PDE) isozymes were used to assess the role of cyclic nucleotide hydrolysis in angiotensin II (ANG II) and hypoxic pulmonary vasoconstriction. In isolated rat lungs, the hypoxic pressor response (HPR) was induced with a 95% N2-5% CO2 gas mixture. When administered during the plateau of the HPR, trequinsin (nonselective PDE inhibitor) and indolidan (cGMP-inhibitable cAMP PDE inhibitor) significantly (P = 0.01) decreased the pulmonary arterial pressure (Ppa) by 60 +/- 7 and 53 +/- 3%, respectively, compared with zaprinast (cGMP PDE inhibitor), rolipram (cGMP-insensitive cAMP PDE inhibitor), and the 0.1% dimethyl sulfoxide (DMSO) vehicle control, which decreased the Ppa by 6 +/- 3, 4 +/- 3, and 0%, respectively. In the trequinsin and indolidan groups, the subsequent ANG II pressor responses and HPRs were significantly (P = 0.01) decreased when compared with the zaprinast, rolipram, and DMSO groups. During normoxia, none of the PDE inhibitor (0.3-30 microM) had an effect on the baseline Ppa. These results suggest that cAMP hydrolysis by the cGMP-inhibitable cAMP PDE play a significant role in pulmonary vascular tone regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.