Abstract

Dandelion extracts have been used in traditional Native American Medicine and Traditional Chinese Medicine (TCM) for treatment of leukemia and breast cancer; however, the mechanism of action remains unknown. Today, DRE is mainly marketed for management of gastrointestinal and liver disorders. The current study aims to determine the anti-cancer activity of dandelion root extract (DRE) against human leukemia, and to evaluate the specificity and mechanism of DRE-induced apoptosis. The effect of DRE on cell viability was evaluated using the colorimetric-based WST-1 assay. Apoptotic cell death was monitored by nuclear condensation and confirmed by exposure of phosphatidylserine to outer leaflet of plasma membrane. Activation of caspases was detected using a fluorogenic substrate specific to either caspase-8 or -3. Loss of mitochondrial membrane potential was observed by microscopy using JC-1 dye. The apoptotic effect of DRE was also evaluated on a dominant-negative FADD (Fas-associated death domain) cell line and non-cancerous peripheral blood mononuclear cells (PBMCs). Aqueous DRE effectively induces apoptosis in human leukemia cell lines in a dose and time dependent manner. Very early activation of caspase-8 and the subsequent activation of caspase-3 indicate that DRE may be inducing extrinsic or receptor-mediated apoptosis. Caspase inhibition rendered this extract ineffective, thus DRE-induced apoptosis is caspase-dependent. Moreover, the dominant-negative FADD cells that are unable to form a complete DISC (death-inducing signaling complex) were resistant to DRE treatment, which further confirms our hypothesis that DRE induces receptor-mediated apoptosis. Interestingly, non-cancerous peripheral blood mononuclear cells (PBMCs) exposed to aqueous DRE under the same treatment conditions as leukemia cells were not significantly affected. Our results suggest that aqueous DRE contains components that act to induce apoptosis selectively in cultured leukemia cells, emphasizing the importance of this traditional medicine and thus presents a potential novel non-toxic alternative to conventional leukemia therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call