Abstract

The uptake and mobilization of (15S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid (15-HETE), a major product of arachidonic acid metabolism, was examined with human neutrophils (polymorphonuclear leukocytes; PMNs). Upon exposure to labeled 15-HETE, PMNs rapidly (15 sec to 20 min) incorporated approximately 20% of the label into phosphatidylinositol, while less than 4% was associated with other phospholipid classes and neutral lipids. This pattern was distinct from that of either labeled arachidonate or labeled(5S)-hydroxy-8,11,14-cis-6-trans-eicosatetraenoic acid (5-HETE), which within 20 min were predominantly associated with triglycerides and phosphatidylcholine. After reversed-phase HPLC, greater than 98% of the label in phosphatidylinositol, isolated from PMNs, was released with phospholipase A2. Upon exposure to either chemotactic peptide (FMLP), phorbol 12-myristate 13-acetate, or an ionophore (A23187), 15-HETE-labeled PMNs released 15-HETE from phosphatidylinositol and displayed an impaired ability to generate leukotriene B4 (LTB4), 20-OH-LTB4, and 20-COOH-LTB4. Deacylated [3H]15-HETE was converted to (5S,15S)-dihydroxy-6,13-trans-8,11-cis-eicosatetraenoic acid (5,15-DHETE), lipoxin A4, and lipoxin B4, each carrying 3H label. PMNs labeled with 5-HETE also released and transformed this HETE when stimulated. However, the profile of labeled products differed between PMNs with either esterified 15-HETE or 5-HETE. When activated, 5-HETE-labeled PMNs generated both 5,20-DHETE and 5,15-DHETE but not labeled lipoxins. Threshold aggregation induced by FMLP with 15-HETE-labeled PMNs was inhibited (approximately 2 orders of magnitude), while the threshold response was relatively unimpaired with either A23187 or phorbol 12-myristate 13-acetate-induced aggregation. Results indicate that 15-HETE is rapidly esterified into phosphatidylinositol of PMNs, which can be mobilized and transformed upon exposure of the cells to a second signal. Moreover, they suggest that eicosanoid intermediates other than arachidonic acid can be stored by cells, released via signal transduction, and oxygenated to generate alternative profiles of eicosanoids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.