Abstract

The diverse gut microbial communities are crucial for host health. How the interactions between microbial communities and between host and microbes influence the host, however, is not well understood. To facilitate gut microbiota research, selective imaging of specific groups of microbiotas in the gut is of great utility but remains technically challenging. Here we present a chemical approach that enables selective imaging of Gram-negative and Gram-positive microbiotas in the mouse gut by exploiting their distinctive cell wall components. Cell-selective labeling is achieved by the combined use of metabolic labeling of Gram-negative bacterial lipopolysaccharides with a clickable azidosugar and direct labeling of Gram-positive bacteria with a vancomycin-derivatized fluorescent probe. We demonstrated this strategy by two-color fluorescence imaging of Gram-negative and Gram-positive gut microbiotas in the mouse intestines. This chemical method should be broadly applicable to different gut microbiota research fields and other bacterial communities studied in microbiology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call