Abstract

Glycerol is an important by-product (biowaste) from biodiesel production. Transformation of glycerol into value-added compounds is critical in improving the overall efficiency of the biodiesel production. In this work, a sustainable and cleaner production of 1,3-propanediol (1,3-PDO) by vapor phase hydrogenolysis of glycerol was performed over titanium phosphate (TiP) supported catalysts by varying the Pt and WO3 loadings (5–20 wt.%). The WO3 promoted Pt modified TiP catalysts were prepared by a simple wet impregnation method and characterized by various analytical techniques in determining the key properties. Furthermore, the catalyst activity and stability were studied under different reaction conditions. The synergistic effects of Pt and WO3 loadings on the final performance of the catalyst has been significant in improving the hydrogen transfer rate. Both Pt and WO3 promotional effects is envisaged the enhanced catalytic properties in conjunction with TiP support acidity. WO3 incorporation increased Brønsted acidity and formed strong interactions with Pt over TiP support. Both Lewis and Brønsted acid sites presented but BAS played a key role in enhancing the 1,3-PDO selectivity in a bifunctional dehydration-hydrogenation reaction mechanism of glycerol. The effect of reaction temperature, contact times and the weight hour space velocity were evaluated. Overall, under optimized reaction conditions, 2 wt.% Pt-10 wt.% WO3/TiP catalyst displayed superior activity with a maximum glycerol conversion of ~ 85% and ~ 51% of 1,3-PDO selectivity achieved at time on stream of 4 h.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call