Abstract

AbstractThe mechanism of hydrogenation at 900~950 psi with copper‐chromite catalyst was investigated with pure methyl esters as well as their mixtures. A comparison of double bond distribution intrans‐monoenes formed during hydrogenation of linoleate and alkali‐conjugated linoleate revealed that 85~95% of the double bonds in linoleate conjugated prior to hydrogenation. The mode of hydrogen addition to conjugated triene and diene at high pressure is similar to that at low pressure but positional and geometric isomerizations of unreduced conjugated esters were less at high pressure. Geometric isomerization of methyl linoleate and linolenate was considerable at high pressure whereas it was negligible at low pressure. The absence of conjugated products during hydrogenation of polyunsaturated fatty acid esters resulted from their high reactivity. Conjugated dienes are 12 times more reactive than the triene, methyl linolenate, and 31 times more reactive than the diene, methyl linoleate. The products of methyl linolenate hydrogenation were the same as those predicted by the conjugation mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.