Abstract
AbstractContinuous hydrogenation of sunflower seed oil has been carried out in a novel three‐phase catalytic membrane hydrogenation reactor. The membrane reactor consisted of a membrane impregnated with Pd as the active catalyst, which provided a catalytic interface between the gas phase (H2) and the oil. Hydrogenations were carried out at different pressures, temperatures, and selectivities, and the formation of trans isomers was monitored during the hydrogenation runs. For the three‐phase catalytic membrane reactor, interfacial transport resistances and intraparticle diffusion limitations did not influence the hydrogenation reaction. Hydrogenation runs under kinetically controlled conditions showed that oleic and elaidic acid were not hydrogenated in the presence of linoleic acid. Initial formation of stearic acid was caused by direct conversion of linoleic acid into stearic acid by a shunt reaction. Furthermore, high selectivities led to high trans levels, which is in accordance with the many published data on hydrogenation of vegetable oils in slurry reactors. Finally, the catalytic membrane showed severe catalyst deactivation. Only partial recovery of the catalyst activity was possible.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.