Abstract

ABSTRACTComplex cobalt-carbonyl ligand based clusters of clusters are used as molecular precursors for self-supported model catalysts. These precursors consist of two metal layers: an outer of the complex Co-carbonyl ligands, and a core of metal (e.g. Co or Zn) carboxylate groups. Partial thermolysis at low temperature (LT) of these materials under hydrogen results in almost completely decarbonylated material with a mainly unchanged carboxylate metal core. Complete pyrolysis at higher temperatures (HT) in hydrogen leads to mixed metal environment. These materials were used as a heterogenous catalyst in the gas phase hydrogenation of crotonaldehyde. The maximum yield of 27 % of desired product crotyl alcohol was observed when HT-CoCo was used as the catalyst at 423 K. The catalyst activity and the crotyl alcohol selectivity remained unchanged over 2 days of operation. The bimetallic ZnCo catalysts showed lower selectivity to crotyl alcohol than the CoCo catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call