Abstract

A series of catalysts with ruthenium nanoparticles (NPs) loaded on the binary oxide TS (TiO2-SiO2) support were prepared by facile sol-gel method for benzene selective hydrogenation. Different mole ratios of Ti/Si were investigated. The catalytic structure, composition, hydrophilicity, electronic state and acidity were characterized. The results indicate that the acidity of the samples increases gradually with the increase of the SiO2 amount. The dispersion of ruthenium nanoparticles was improved on binary oxide support compared with TiO2 and an obvious Ru size effect appeared with the increase of Ti/Si molar ratio. It was also found that the hydrophilicity of the supports could be efficiently improved by introducing a small amount of SiO2 to TiO2, which may be due to the large amount of surface hydroxyl groups on the binary oxide samples after SiO2 introduction. This result was consistent with the increasing trend of cyclohexene yield, indicating that the surface hydroxyl groups play a significant role in the motivation of cyclohexene desorption. Ru/TS (7: 1) showed the best catalytic performance of 38.2% yield to cyclohexene with the highest initial selectivity to cyclohexene (S0) of 87.3%. The catalytic stability experiments showed that the yield of cyclohexene could maintain at 30% after five cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.