Abstract

The selective hydrogenation of 2-butyne-1,4 diol to cis-2-butene-1,4 diol has been studied using different palladium-supported catalysts. With 1% Pd/C catalyst, the major product formed was 1,4-butanediol, along with other side products such as butenediol, γ-hydroxy butyraldehyde, n-butyraldehyde and n-butanol. Role of supports and ammonia was very significant in achieving a high selectivity to the intermediate, 2-butene-1,4-diol. A selective hydrogenation of 2-butyne-1,4-diol to give cis-2-butene-1,4-diol was achieved using 1% Pd/CaCO 3–NH 3 catalyst system. Effects of catalyst pretreatment with both 2-butyne-1,4-diol and H 2 on the catalyst activity and selectivity were investigated. It was found that the catalyst activity increased substantially, while the selectivity to 2-butene-1,4-diol decreased slightly with hydrogen-pretreated catalyst. The effects of hydrogen pressure, catalyst loading, initial concentrations of 2-butyne-1,4-diol and ammonia on the initial rate of hydrogenation were also studied in a batch reactor in a temperature range of 323–353 K. All the data obtained were in the kinetic regime under the conditions of the present work, based on which a Langmuir–Hinshelwood (L–H) type rate model was proposed. To verify the applicability of the kinetic model over a wide range of conditions, a batch reactor model was also developed. The agreement between the predicted concentration vs. time profiles with the experimental results was excellent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.