Abstract

<h2>Summary</h2> Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is receiving growing interest for energy storage because it can be locally synthesized from renewable energy through the two-electron water oxidation and the two-electron oxygen reduction reactions. Recently, engineering the microenvironment of existing catalysts has become a promising approach to address the activity, selectivity, and stability challenges of H<sub>2</sub>O<sub>2</sub> synthesis and fuel cells, reducing the gap between theoretical prediction and experimental observations. We summarize these progresses from a multi-scale perspective, including tailoring the active sites on the catalytic surface, engineering the interface near the reactive sites, and improving the device design to achieve selective H<sub>2</sub>O<sub>2</sub> conversion. Such strategies tune the thermodynamic energy barriers and reaction pathways, facilitate mass transfer for reactants and products, and stabilize the products and catalytic surfaces. The discussions here are expected to stimulate further efforts to achieve efficient on-site H<sub>2</sub>O<sub>2</sub> production and power generation by H<sub>2</sub>O<sub>2</sub> with high round-trip efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.