Abstract

A fast and reliable method was developed for the selective separation and preconcentration of Cu2+ ions using homogeneous liquid-liquid extraction using a novel benzo-substituted macrocyclic diamide, 5,6,7,8,9,10-hexahydro-2H-1,13,4,7,10-benzodioatriazacyclo-pentadecine-3,11(4 H,12 H)-dione, as a selective complexing agent. An aqueous solution of Zonyl FSA (FSA) was used as a phase-separation agent at pH 4.5. Electrothermal atomic absorption spectrometry was used for Cu2+ determination after preconcentration. The influences of pH, type and volume of the water-miscible organic solvent, concentration of FSA, concentration of the ligand and the effect of diverse ions were investigated. Factorial design and response surface methods were used for the optimization purposes. Under the optimum experimental conditions, 50 ng of Cu2+ in 5 mL aqueous sample could be extracted quantitatively into 76 µL of the sediment phase. The maximum preconcentration factor was 65. The calibration curve was linear in the concentration range 0.2 to 4.0 µg L−1. The detection limit and relative standard deviation were 4 ng L−1 and 4.6%, respectively. The method was successfully applied to the extraction and determination of Cu2+ in natural water samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call