Abstract

Summary Multi-component organic solar cells (OSCs) comprising more than two donor and acceptor materials have attracted significant research attention, as they can offer broader and better absorption, hence increasing solar cell performance. However, the morphology of multi-component OSCs is exceptionally complicated and challenging to control. Here, we develop a highly efficient (near 17.7%) quaternary OSC (q-OSC) using two polymer donors (namely PM6 and PTQ10) along with a fullerene (PC71BM) and a non-fullerene acceptor (N3). Our quaternary system demonstrates a new type of “rivers and streams” functional hierarchical (multi-length scale) morphology, where small domains of PTQ10 and PC71BM act as separators that spatially separate PM6 and N3, which effectively suppressed charge recombination, enhanced hole transport, and balanced charge transportation. These improvements in the quaternary system contribute to the increased internal quantum efficiency (IQE) and, thus, lead to an excellent JSC and device performance, which surpass their respective binary and ternary OSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.