Abstract

Orbital angular momentum (OAM) of light has the potential to induce high-order transitions of electrons in atoms by compensating for the OAM required. However, due to the dark spot situating at the focal center of the OAM beam, high-order transitions are typically weak. In this study, we demonstrate efficient and selective high-order resonances in symmetric and asymmetric plasmonic nanoparticles that are comparable in size to the waist radius of the OAM beam. In a symmetric nanoparticle configured with a complete nanoring lying on the focal center, there is a pure high-order resonance obeying the law of conservation of angular momentum during the interaction between OAM light and the nanosystem. In an asymmetric nanoparticle configured with an complete ring off the beam center or a splitting nanoring, there are multiple resonances whose resonance orders are influenced by the ring's geometry, position, orientation, and photon OAM. Thus, high-order resonances in the symmetric and asymmetric plasmonic nanostructures are selectively stimulated using vortex beams. Our results may help to understand and control OAM-involved light-material interactions of asymmetric nanosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call