Abstract

Future gas sensors require minimal power consumption to enable their integration into portable electronics such as smart mobile phones. We developed H2S gas sensors based on a self-heating effect using metal oxide nanowires (NWs). We fabricated bare SnO2 NWs, CuO functionalized SnO2 NWs, and a CuO functionalized SnO2-ZnO core-shell (C–S) NW sensor, and tested their sensor response towards H2S gas by applying different external voltages at room temperature. It was found that the CuO functionalized SnO2-ZnO C-S NW gas sensor had higher response to H2S gas relative to other tested sensors due to higher self-heating effect, formation of heterojunctions, phase transformation, and spillover effects of CuO nanoparticles. Without external heat, the selective H2S detection obtained in this work demonstrates the possibility of embedding low power consumption gas sensors in portable devices for detection of H2S as a biomarker for early diagnosis of diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.