Abstract

ZnO nanorod arrays find applications in solar energy conversion, light emission and other promising areas. One approach to generate ZnO nanorods is the cost efficient aqueous chemical growth (ACG). Usually the ACG process is based on a nucleation step followed by growth of ZnO nanorods in aqueous solution at temperatures below 95 ∘C. We report on the fabrication of homogeneous, large scale arrays of nanorods on various substrate materials (Si, glass, polymer) by ACG. PL-measurements show surprisingly good optical quality although the rods were grown at low temperature. Even though we have developed patterning of these arrays with photolithographic techniques, a bottom up approach for lateral patterning is important concerning further applications especially for mass-production. The substrates with patterned metal layers were employed to realize selective growth of nanorods. The experiments were carried out on Ti-, Ag- and Pt-patterned substrates. Selective growth on metal structured glass substrates was developed and is described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.