Abstract

Top-down grazer control of cyanobacteria is a controversial topic due to conflicting reports of success and failure as well as a bias toward studies in temperate climates with large generalist grazers like Daphnia. In the tropical lowland lakes of Brazil, calanoid copepods of the Notodiaptomus complex dominate zooplankton and co-exist in high abundance with permanent blooms of toxic cyanobacteria, raising questions for grazer effects on bloom dynamics (i.e., top-down control vs. facilitation of cyanobacterial dominance). Accordingly, the effect of copepod grazing on the relative abundance of Microcystis co-cultured with a eukaryotic phytoplankton (Cryptomonas) was evaluated in a series of 6-day laboratory experiments. Grazer effects were tested in incubations where the growth of each phytoplankton in the presence or absence of the copepod Notodiaptomus iheringi was monitored in 1 L co-cultures, starting with a 6-fold initial dominance of Cryptomonas by biomass. Compared to the no grazer controls, N. iheringi reduced the growth of both phytoplankton, but Cryptomonas growth was reduced to negative values while Microcystis growth continued positively despite grazers. Hence, in a matter of 6 days selective grazing by N. iheringi increased the biomass of Microcystis relative to Cryptomonas by an order of magnitude compared to controls, and thus, facilitated the dominance of this cyanobacterium. To account for the potential effect of allelopathy, we performed a secondary experiment comparing the abundance and growth rate of Microcystis and Cryptomonas in single and mixed co-cultures in the absence of grazers. The growth rate of Microcystis was unaffected by the presence or relative abundance of Cryptomonas, and vice versa, indicating no allelopathic effects. Our results suggest that selectively grazing zooplankton may facilitate cyanobacteria blooms by grazing on their eukaryotic phytoplankton competitors in nature. Given that selective grazers predominate zooplankton biomass in warmer waters, grazer facilitation of blooms may be a common but poorly understood regulator of plankton dynamics in a warmer and more eutrophic world.

Highlights

  • Increasing frequency, duration, and range of cyanobacteria blooms reduce water quality and disrupt the flow of energy from primary production to higher trophic levels due to their poor nutritional quality, toxicity, and morphological defenses for zooplankton grazers (Dickman et al, 2008; Rastogi et al, 2015; Heathcore et al, 2016)

  • We evaluated the interaction of a common bloom-forming cyanobacterium with a eukaryotic phytoplankton competitor in the presence and absence of a copepod grazer to test whether zooplankton could facilitate cyanobacterial dominance

  • Adding the copepod N. iheringi to the competing phytoplankton increased the relative abundance of Microcystis co-cultured with Cryptomonas compared to no-grazer controls

Read more

Summary

Introduction

Increasing frequency, duration, and range of cyanobacteria blooms reduce water quality and disrupt the flow of energy from primary production to higher trophic levels due to their poor nutritional quality, toxicity, and morphological defenses for zooplankton grazers (Dickman et al, 2008; Rastogi et al, 2015; Heathcore et al, 2016). While elevated nutrient concentrations and warm temperatures are recognized as key drivers of blooms (Smith and Schindler, 2009; Paerl and Otten, 2013), the trophic interactions in eutrophic systems, and especially the question of “who grazes the bloom,” is less understood (Urrutia-Cordero et al, 2015; Ger et al, 2016c) This is partly because of the bias toward studies in cooler temperate climates with relatively short bloom durations, where large and tolerant generalist grazers like Daphnia make top down control a possibility even under ideal abiotic conditions for cyanobacterial growth (Sarnelle et al, 2010; Chislock et al, 2013). Trophic interactions in warmer and bloom-dominated waters deserve more attention, to better understand the ecology of cyanobacteria in tropical regions and because they can be used as models for predicting future changes in temperate lakes (Ger et al, 2014; Paerl, 2017)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.