Abstract

Enzyme immobilization has been widely used to improve the stability and recyclability of enzymes in industrial processes. In this work, a sortase-mediated and therefore selective covalent immobilization strategy (sortagging) for enzymes on microgels (GelZyms) was investigated. Aqueous microgels were synthesized from poly(N-vinylcaprolactam)/glycidyl methacrylate (PVCL/GMA) and tagged with the sortase A recognition peptide sequence (LPETG) or its nucleophilic counterpart-tag (GGG). General applicability and selective immobilization were confirmed by subsequent sortagging of five different enzymes (Bacillus subtilis lipase A (BSLA), Yersinia mollaretii phytase (Ym-phytase), Escherichia coli copper efflux oxidase (CueO laccase), cellulase A2, and Bacillus megaterium monooxygenase P450 BM3). The latter was performed directly from the cell lysate to ensure cost-effective immobilization. All five immobilized enzymes were catalytically active and could be recycled (e.g., laccase CueO and monooxygenase P450 BM3 F87A; >55% residual activity after six cycles). Application potential was demonstrated by using CueO decorated microgels for bleaching of the synthetic dye indigo carmine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.