Abstract

Mesoporous and amorphous ZnSnO3 nanocubes of ~37 nm size coated with a thin porous carbon layer have been prepared using monodisperse ZnSn(OH)6 as the active precursor and low-temperature synthesized polydopamine as the carbon precursor. The small single nanocubes cross-link with each other to form a continuous conductive framework and interconnected porous channels with macropores of 74 nm width. Because of its multi-featured nanostructure, this material exhibits greatly enhanced integration of reversible alloying/de-alloying (i.e., transformation of Li(4.4)Sn and LiZn to Sn and Zn) and conversion (i.e., oxidation of Sn and Zn to ZnSnO3) reaction processes with an extremely high capacity of 1060 mA h g(-1) for up to 100 cycles. A high reversible capacity of 650 and 380 mA h g(-1) can also be delivered at rates of 2 and 3 A g(-1), respectively. This excellent electrochemical performance is attributed to the small particle size, well-developed mesoporosity, the amorphous nature of the ZnSnO3 and the continuous conductive framework produced by the interconnected carbon layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.