Abstract

BackgroundMicroRNAs (miRNAs) are a class of small RNA molecules that regulate expression of specific mRNA targets. They can be released from cells, often encapsulated within extracellular vesicles (EVs), and therefore have the potential to mediate intercellular communication. It has been suggested that certain miRNAs may be selectively exported, although the mechanism has yet to be identified. Manipulation of the miRNA content of EVs will be important for future therapeutic applications. We therefore wished to assess which endogenous miRNAs are enriched in EVs and how effectively an overexpressed miRNA would be exported.ResultsSmall RNA libraries from HEK293T cells and vesicles before or after transfection with a vector for miR-146a overexpression were analysed by deep sequencing. A subset of miRNAs was found to be enriched in EVs; pathway analysis of their predicted target genes suggests a potential role in regulation of endocytosis. RT-qPCR in additional cell types and analysis of publicly available data revealed that many of these miRNAs tend to be widely preferentially exported. Whilst overexpressed miR-146a was highly enriched both in transfected cells and their EVs, the cellular:EV ratios of endogenous miRNAs were not grossly altered. MiR-451 was consistently the most highly exported miRNA in many different cell types. Intriguingly, Argonaute2 (Ago2) is required for miR-451 maturation and knock out of Ago2 has been shown to decrease expression of other preferentially exported miRNAs (eg miR-150 and miR-142-3p).ConclusionThe global expression data provided by deep sequencing confirms that specific miRNAs are enriched in EVs released by HEK293T cells. Observation of similar patterns in a range of cell types suggests that a common mechanism for selective miRNA export may exist.

Highlights

  • IntroductionMicroRNAs (miRNAs) are a class of small RNA molecules that regulate expression of specific mRNA targets

  • MicroRNAs are a class of small RNA molecules that regulate expression of specific mRNA targets

  • One strand of the mature miRNA is loaded into an RNA induced silencing complex (RISC), which mediates the interaction between the miRNA and its target mRNA molecules

Read more

Summary

Introduction

MicroRNAs (miRNAs) are a class of small RNA molecules that regulate expression of specific mRNA targets. They can be released from cells, often encapsulated within extracellular vesicles (EVs), and have the potential to mediate intercellular communication. Membrane-bound extracellular vesicles (EVs), are referred to by various terms in the literature, including microvesicles or microparticles They may be divided into two main types formed either by budding of the plasma membrane (shedding vesicles, ectosomes; approximately 100 nm −1 μm in diameter) or by exocytosis of multivesicular bodies (MVB) (exosomes; approximately 50– 100 nm) [1,2,3]. Argonaute (Ago) proteins are part of the RISC and mediate cleavage of target mRNAs [10,11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call