Abstract

Many studies on in vitro transformation of human cells indicate that the cells must be immortalized before they can be neoplastically transformed, indicating that immortalization is a critical step in multistep neoplastic transformation of human cells. We immortalized three human cell lines by repeated treatment with either 60Co gamma rays or a chemical carcinogen, 4-nitroquinoline 1-oxide, and found that all three immortalized cell lines have mutations in the tumor suppressor gene, p53. Direct sequencing of the reverse-transcribed mRNA and immunoprecipitation of p53 protein revealed that mutant p53 is selectively expressed in all the immortalized cell lines, whereas the genomic fragments of the immortalized cells contain wild-type and mutated p53 alleles. Although the mutated p53 is selectively expressed in the immortalized cells, expression of the wild-type p53 was induced by treatment of the cells with a hypomethylating reagent, 5-azacytidine, indicating that the wild-type p53 allele might be inactivated by hypermethylation of DNA. Actually, the entire genomic locus including the promoter region of p53 is hypermethylated in all the immortalized cell lines. Expression and phosphorylation of Rb was normal in these three cell lines. Thus, inactivation of both wild type p53 alleles and selective expression of mutated p53 seem to be key factors in the immortalization of human fibroblasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.