Abstract

The pattern of cell loss and neuronal degeneration resulting from multiple microinjections of N-methyl-D-aspartate (NMDA), ibotenate (IBO), quisqualate (QUIS), and kainate (KA) into hippocampus was studied, together with the protection provided by the NMDA antagonist 3-(+/-)-2-carboxypiperazin-4-yl-propyl-1-phosphonate (CPP). Histological evaluation was carried out after 7 days of survival. NMDA and IBO resulted in an extensive loss of all cells in the hippocampus including dentate gyrus, hilar cells, and CA3-CA1 pyramidal cells, but there was an absence of damage to areas and structures outside hippocampus. After QUIS and KA injections the hippocampal damage was limited to hilar cells in the dentate gyrus, CA3 pyramidal cells, and partial loss of CA1 cells; there was extensive extrahippocampal damage including entorhinal cortex, amygdala, layers III, V, and VI of ventral neocortex, olfactory areas, and various thalamic nuclei. CPP provided almost complete protection from the effects of intrahippocampal injections of NMDA and IBO, but did not affect the hippocampal cell loss found after QUIS and KA (with the exception of minor protection of some CA1 cells). CPP protected most extrahippocampal sites from the damage resulting from QUIS and KA, indicating that such excitotoxic cell death is indirect and involves NMDA receptor activation by an endogenous agent. The use of multiple microinjections as opposed to single injections allows a clearer interpretation of selective excitotoxic vulnerability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call