Abstract
Fe-Nx-C-based single-atom (SA-Fe-N-C) catalysts have shown favorable oxygen reduction reaction (ORR) activity. However, their application in proton exchange membrane fuel cells is hindered by reduced performance owing to the thick catalyst layer, restricting mass transfer and the O2 supply. Metal-organic frameworks (MOFs) are a promising class of crystal materials, but their narrow pores exacerbate the sluggish mass-transport properties within the catalyst layer. This study developed an approach for constructing an open-pore structure in MOFs via chelation-assisted selective etching, resulting in atomically dispersed Fe atoms anchored on an N, S co-doped carbon framework. The open-pore structure reduces oxygen transport resistance in the membrane electrode assembly (MEA) with unprecedented ORR activity and stability, as evidenced by finite element simulations. In an acidic electrolyte, the OP-Fe-NC catalyst shows a half-wave potential of 0.89 V vs RHE, surpassing Pt/C by 20 mV, and a current density of 29 mA cm-2 at 0.9 ViR-free in the MEA. This study provides an effective structural strategy for fabricating electrocatalysts with high mass efficiency and atomic precision for energy storage and conversion devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.