Abstract

In this work, we find that Majorana fermions induce selective equal spin Andreev reflections (SESARs), in which incoming electrons with certain spin polarization in the lead are reflected as counterpropagating holes with the same spin. The spin polarization direction of the electrons of this Andreev reflected channel is selected by the Majorana fermions. Moreover, electrons with opposite spin polarization are always reflected as electrons with unchanged spin. As a result, the charge current in the lead is spin polarized. Therefore, a topological superconductor which supports Majorana fermions can be used as a novel device to create fully spin-polarized currents in paramagnetic leads. We point out that SESARs can also be used to detect Majorana fermions in topological superconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.