Abstract

We analyze an optomechanical system formed by a mechanical mode and the two optical modes of an optomechanical cavity for the realization of a strongly quantum correlated three-mode system. We show that the steady state of the system shows three possible bipartite continuous variable (CV) entanglements in an experimentally accessible parameter regime, which are robust against temperature. We further show that selective entanglement between the mechanical mode and any of the two optical modes is also possible by the proper choice of the system parameters. Such a two-mode optomechanical system can be used for the realization of CV quantum information interfaces and networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call