Abstract

Protein tyrosine nitration (PTN) is a post-translational modification that is related to several acute or chronic diseases. PTN introduces a nitro group in the ortho position of the phenolic hydroxyl group of tyrosine residues. PTN has been shown to be involved in the pathogenesis of inflammatory responses, cancers, and neurodegenerative and age-related disorders. Furthermore, it has been proposed that PTN regulates signal cascades related to nitric oxide (NO·) production and NO-mediated processes. Although nitrated proteins as markers of oxidative stress are confirmed by immunological assays in various affected cells or tissues, it is not known how many different types of proteins in living cells are nitrated. Since protein nitration is a low-abundance post-translational modification, development of an effective enrichment method for nitrated proteins is needed to detect nitrated peptides or proteins from the limited amount of pathophysiological samples. In the present study, we developed an enrichment method using specific chemical tagging. Nitroproteome profiling using chemical tagging and mass spectrometry was validated by model proteins. Furthermore, we successfully identified numerous nitrated proteins from the Huh7 human hepatoma cell line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call