Abstract
AbstractNarrow‐band Purcell enhancement for electric and magnetic dipole emitters by high‐order Mie resonances up to the magnetic and electric octupole modes of a silicon nanosphere antenna is experimentally demonstrated. Eu3+ complexes are attached on the surface of a silicon nanosphere 160 to 316 nm in diameter, and the photoluminescence and scattering properties are investigated. It is shown that the branching ratio of the 5D0→7Fj (j = 0–4) f‐f transitions of Eu3+ is controlled in a wide range by tuning the resonance wavelength of a silicon nanosphere by the size. Because of the high‐quality factor resonances, not only a specific 5D0→7Fj transition, but also a specific Stark sublevel transition whose spectral separation is 3–9 nm can be selectively enhanced by precisely controlling the size of a silicon nanosphere with the accuracy of ≈2 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.