Abstract

Although concanavalin A (Con A) as a T cell stimulant can cause natural killer T (NKT) cell-mediated liver injury in mice and a nonhepatotoxic dose of Con A can trigger innate immune cells including NKT cells to prevent tumor metastasis in the liver, little is known about the role of Con A-primed NKT cells in liver repair. In this study, we aimed to investigate the effect of pretreatment with a nontoxic dose of Con A on subsequent liver regeneration in mice. A nontoxic dose of Con A was injected intravenously 24 h before partial hepatectomy (PHx), which was used as a model of liver regeneration. Ratios of remnant liver mass to body weight, bromodeoxyuridine (BrdU) incorporation and proliferating cell nuclear antigen (PCNA) labeling were used to assess liver regeneration. Hepatic mononuclear cells were isolated and analyzed by flow cytometry. After PHx, the ratios of liver weight to body weight, PCNA-positive hepatocytes and BrdU-positive hepatocytes in Con A-pretreated mice were significantly higher than that of phosphate-buffered saline-treated mice, indicating that Con A pretreatment can accelerate liver regeneration. Flow cytometric analysis showed that NKT cells were significantly activated and selectively eliminated after the Con A administration. Moreover, NKT cells expressed more apoptosis-related molecules, Fas and Annexin V. Taken together, Con A accelerates liver regeneration in mice by eliminating hepatic NKT cells via activation-induced cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.